Coastal and Submesoscale Process Studies for ASIRI Amit Tandon Physics Department, UMass Dartmouth 285 Old Westport Rd North Dartmouth, MA 02747 Phone: (508) 999-8357 fax: (508) 999-9115 email: atandon@umassd.edu Grant Number: N000141310456 Amala Mahadevan Woods Hole Oceanographic Institutions Woods Hole, MA Phone: (508) 289 3440 fax (508) 457 2181 email: amala@whoi.edu #### LONG-TERM GOALS To determine how one-dimensional and three-dimensional mixing and advective processes in the upper ocean in the Bay of Bengal influence the Monsoon. ## **OBJECTIVES** We will conduct process studies to examine and evaluate lateral and vertical routes for dispersal of the freshwater in the Bay of Bengal. #### **APPROACH** We propose evaluating the one-dimensional balance at the RAMA mooring at 15N to ascertain whether three dimensional processes are important. We will also use the existing ARGO profiles to get an idea of the horizontal buoyancy gradients in the Bay of Bengal. These would be useful for process experiments. Several numerical experiments over a range of scales and outlined as follows: - i. With strong surface freshwater stratification and a barrier layer, forced by winds, and with mixing modeled by a dynamic subgrid closure scheme to examine the vertical mixing in response to surface forcing. - ii. With a coastal buoyant current against steep topography, forced by winds, to examine the instabilities of the current in response to wind-driven up-/down-welling. - iii. With a wind stress curl to generate a cold upwelling feature to examine the stability of the cold dome. - iv. With high resolution winds that resolve the near-inertial motion and a diurnal heat flux. This would ascertain whether the near-inertial mixing is important and rectification effects can change the mixed layer structure. | maintaining the data needed, and c
including suggestions for reducing | lection of information is estimated to
ompleting and reviewing the collect
this burden, to Washington Headqu
uld be aware that notwithstanding an
DMB control number. | ion of information. Send comment
arters Services, Directorate for Inf | s regarding this burden estimate
ormation Operations and Reports | or any other aspect of the s, 1215 Jefferson Davis | nis collection of information,
Highway, Suite 1204, Arlington | | |---|---|--|---|--|--|--| | 1. REPORT DATE
30 SEP 2013 | | 2. REPORT TYPE | | 3. DATES COVERED 00-00-2013 to 00-00-2013 | | | | 4. TITLE AND SUBTITLE | | 5a. CONTRACT NUMBER | | | | | | Coastal and Submesoscale Process Studies for ASIRI | | | | 5b. GRANT NUMBER | | | | | | | | 5c. PROGRAM ELEMENT NUMBER | | | | 6. AUTHOR(S) | | | | 5d. PROJECT NUMBER | | | | | | | | 5e. TASK NUMBER | | | | | | | | 5f. WORK UNIT NUMBER | | | | 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Massachusetts Dartmouth, Physics Department, 285 Old Westport Rd, North Dartmouth, MA,02747 | | | | 8. PERFORMING ORGANIZATION
REPORT NUMBER | | | | 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) | | | | 10. SPONSOR/MONITOR'S ACRONYM(S) | | | | | | | | 11. SPONSOR/MONITOR'S REPORT
NUMBER(S) | | | | 12. DISTRIBUTION/AVAII Approved for publ | ABILITY STATEMENT ic release; distributi | on unlimited | | | | | | 13. SUPPLEMENTARY NO | TES | | | | | | | 14. ABSTRACT | | | | | | | | 15. SUBJECT TERMS | | | | | | | | 16. SECURITY CLASSIFICATION OF: | | | 17. LIMITATION OF
ABSTRACT | 18. NUMBER
OF PAGES | 19a. NAME OF
RESPONSIBLE PERSON | | | a. REPORT
unclassified | b. ABSTRACT unclassified | c. THIS PAGE unclassified | Same as Report (SAR) | 3 | REST ONSIBEE LEASON | | **Report Documentation Page** Form Approved OMB No. 0704-0188 v. Offshore mesoscale eddies interacting with the coastal current ## PRELIMINARY RESULTS Manita Chouksey, a summer intern MTech student from IIT BBS India visited Tandon's laboratory in summer 2013 and worked with him on data from 15N RAMA mooring. Using the COARE3.0 algorithms to construct air-sea fluxes, and using PWP mixed layer model, the results show that model characteristics begin to diverge from the data, and beyond a few days, advective processes become important at this location. Manita is now focusing on the effect of optical characteristics on the upper ocean modeling. Postdoc Dr. Sanjiv Ramachandran and the PIs analyzed depth-averaged lateral gradients in the bay using Argo profiles for the months of October, November and December. We chose two regions for the analysis, one in the open ocean (88-90E, 9-12N) and one closer to the coast (87-92E, 15-18N). The lateral gradients increase with decreasing scale (Fig.1) for all three months, from O(10⁻⁸ s⁻²) at scales O(100km) to O(10⁻⁶ s⁻²) at scales O(1-10km). This is true for the gradients averaged two different depth ranges, 0-20m and 20-100m. At smaller scales (O(1-10km)) the gradients in the region close to the coast typically tend to exceed those in the open ocean. The large lateral gradients in the upper ocean strongly suggest O(1—10km) submesoscale frontal processes may be important in the North Bay. Such processes have been found to be vital to the upper-ocean dynamics in the North Atlantic and the Kuroshio. Compared to these regions, our estimated values of the lateral gradients in the upper 20m are significantly larger, hinting potentially at an even greater role for submesoscale physics in the coastal BoB. The baroclinicity at depth (100m) could give rise to coupling between the fast submesoscale modes in the upper ocean and the slower mesoscale dynamics below. The T-S structure for these months (Fig.2) shows the formation of a temperature inversion by December, probably due to the creation of a barrier layer. The inversion gets stronger as we approach the coast. Another interesting feature revealed in the T-S diagram is the presence of compensating gradients in December, clearer in the top panel of Fig. 2. The large influx of freshwater from river runoff into the bay creates strong gradients in the salinity field, and consequently, the buoyancy field. Such gradients, however, can be erased rapidly on inertial time scales by frontal, submesoscale processes which are efficient in converting the available potential energy residing in the lateral gradient to kinetic energy. Figure 1 Lateral buoyancy gradient versus scale based on Argo float profiles within 1-2 days and within 5 days. The buoyancy gradients are very significant at scales of less than 30km in the upper 100m. Figure 2 T-S structure in selected region of the Bay based on ARGO float profiles, showing temperature inversion in December profiles (barrier layer) and compensated gradients.